Replace NSFW detector implementation
This commit is contained in:
parent
3330a85c2c
commit
6393538333
8 changed files with 21 additions and 3566 deletions
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
Copyright © 2020 Mia Herkt
|
||||
Copyright © 2024 Mia Herkt
|
||||
Licensed under the EUPL, Version 1.2 or - as soon as approved
|
||||
by the European Commission - subsequent versions of the EUPL
|
||||
(the "License");
|
||||
|
@ -18,57 +18,16 @@
|
|||
and limitations under the License.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
os.environ["GLOG_minloglevel"] = "2" # seriously :|
|
||||
import caffe
|
||||
import av
|
||||
av.logging.set_level(av.logging.PANIC)
|
||||
from transformers import pipeline
|
||||
|
||||
class NSFWDetector:
|
||||
def __init__(self):
|
||||
npath = Path(__file__).parent / "nsfw_model"
|
||||
self.nsfw_net = caffe.Net(
|
||||
str(npath / "deploy.prototxt"),
|
||||
caffe.TEST,
|
||||
weights = str(npath / "resnet_50_1by2_nsfw.caffemodel")
|
||||
)
|
||||
self.caffe_transformer = caffe.io.Transformer({
|
||||
'data': self.nsfw_net.blobs['data'].data.shape
|
||||
})
|
||||
# move image channels to outermost
|
||||
self.caffe_transformer.set_transpose('data', (2, 0, 1))
|
||||
# subtract the dataset-mean value in each channel
|
||||
self.caffe_transformer.set_mean('data', np.array([104, 117, 123]))
|
||||
# rescale from [0, 1] to [0, 255]
|
||||
self.caffe_transformer.set_raw_scale('data', 255)
|
||||
# swap channels from RGB to BGR
|
||||
self.caffe_transformer.set_channel_swap('data', (2, 1, 0))
|
||||
|
||||
def _compute(self, img):
|
||||
image = caffe.io.load_image(img)
|
||||
|
||||
H, W, _ = image.shape
|
||||
_, _, h, w = self.nsfw_net.blobs["data"].data.shape
|
||||
h_off = int(max((H - h) / 2, 0))
|
||||
w_off = int(max((W - w) / 2, 0))
|
||||
crop = image[h_off:h_off + h, w_off:w_off + w, :]
|
||||
|
||||
transformed_image = self.caffe_transformer.preprocess('data', crop)
|
||||
transformed_image.shape = (1,) + transformed_image.shape
|
||||
|
||||
input_name = self.nsfw_net.inputs[0]
|
||||
output_layers = ["prob"]
|
||||
all_outputs = self.nsfw_net.forward_all(
|
||||
blobs=output_layers, **{input_name: transformed_image})
|
||||
|
||||
outputs = all_outputs[output_layers[0]][0].astype(float)
|
||||
|
||||
return outputs
|
||||
self.classifier = pipeline("image-classification", model="giacomoarienti/nsfw-classifier")
|
||||
|
||||
def detect(self, fpath):
|
||||
try:
|
||||
|
@ -77,23 +36,13 @@ class NSFWDetector:
|
|||
except: container.seek(0)
|
||||
|
||||
frame = next(container.decode(video=0))
|
||||
img = frame.to_image()
|
||||
res = self.classifier(img)
|
||||
|
||||
if frame.width >= frame.height:
|
||||
w = 256
|
||||
h = int(frame.height * (256 / frame.width))
|
||||
else:
|
||||
w = int(frame.width * (256 / frame.height))
|
||||
h = 256
|
||||
frame = frame.reformat(width=w, height=h, format="rgb24")
|
||||
img = BytesIO()
|
||||
frame.to_image().save(img, format="ppm")
|
||||
|
||||
scores = self._compute(img)
|
||||
except:
|
||||
return -1.0
|
||||
|
||||
return scores[1]
|
||||
return max([x["score"] for x in res if x["label"] not in ["neutral", "drawings"]])
|
||||
except: pass
|
||||
|
||||
return -1.0
|
||||
|
||||
if __name__ == "__main__":
|
||||
n = NSFWDetector()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue